

Overview of the BOUT++
code structure

Ben Dudson

York Plasma Institute, University of York, UK

benjamin.dudson@york.ac.uk

3rd September 2013

mailto:benjamin.dudson@york.ac.uk

25 / 2

BOUT++

● A toolbox for solving PDEs on parallel computers, together
with pre- and post-processing codes. Aims to reduce
duplication of effort, and allow quick development and
testing of new physics models and simulations

● A collection of examples and test cases

● Focused on flute-reduced plasma models in field-aligned
coordinate systems, but more general capabilities

Is not:

● A single plasma model or simulation

● A general library of numerical methods for parallel
computing. Other tools like PETSc are available for that.

● Magic. Appropriate numerical schemes depend on the
problem, and must be chosen intelligently by the user

25 / 3

Key features

● Finite difference initial value code in 3D

● Implicit (e.g. BDF, C-N) or explicit (e.g. RK4, Karniadakis)
time integration

● Coordinate system set in metric tensor components

● Handles complicated topology of X-point tokamak
geometry

● Written in C++, quite modular design

● A growing community working to develop and exploit
simulations using fluid and gyro-fluid models

25 / 4

Improvements since version 1.0

● Interfaces to PETSc (timestepping + linear solves) and
MUMPS (linear solves).
→ Many sophisticated methods, more general problems

● Linear solvers for new classes of problems
→ Fast parabolic solves along (equilibrium) field lines

● Preconditioning schemes → faster simulations

● New differencing methods, flux conservative and limiter
schemes, boundary conditions, ...

● Pre- and post-processing in more languages
→IDL, Python, Matlab, Mathematica, Octave

● 3D visualisation using VisIt and Mayavi

● Many updates, fixes, restructuring
configure scripts, manual, ...

25 / 5

Getting BOUT++

● Workshop release version 2.0

● Version control using git, a distributed system designed for
large collaborative projects (e.g. Linux kernel)

 → See http://git-scm.com

● To download, run in terminal:

● To later update to latest version, change to BOUT-2.0
directory and run

https://github.com/boutproject/BOUT-2.0https://github.com/boutproject/BOUT-2.0https://github.com/boutproject/BOUT-2.0

$ git clone
 https://github.com/boutproject/BOUT-2.0.git

$ git pull

25 / 6

BOUT++ structure

● Separates generic methods from model-specific code

● Most of the code doesn't know or care about what a variable
represents, its normalisation etc. Only needs to know the
geometry and which operation to perform

BOUT++ libraryPhysics model

Time
integration

Differencing
methods

Boundary
value solvers

Mesh
comms

Input /
Output

Evolving
variables

Model
equations

Normalisaition

~30,000 lines
~100 - 1000 lines

25 / 7

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual

src

examples

tools

● configure and make scripts
(see user manual, and Maxim's talk)

● README and COPYING

25 / 8

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual

src

examples

tools

user_manual

developer_manual

coordinates

User manual describes how to get started
with BOUT++.

25 / 9

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

src

examples

tools

field

fileio

invert

manual

mesh

solver

sys

Data handling
routines

● Memory allocation
and handling

● Scalar and vector
fields, and
operations on them

● Initial and boundary
conditions

25 / 10

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

src

examples

tools

field

fileio

invert

manual

mesh

solver

sys

Data input and output

● Reading and writing
binary file formats
(pdb, netcdf, ...)

● Interface for writing
scalar and vector
fields

25 / 11

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

src

examples

tools

field

fileio

invert

manual

mesh

solver

sys

PDE solvers
for boundary-value

problems

● Common routines
for inverting
Laplacian type
equations

● Interfaces to
PETSc, MUMPS, …
for some problems

25 / 12

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

src

examples

tools

field

fileio

invert

manual

mesh

solver

sys

Mesh

● Distribution of grid
points across
processors

● Local ↔ Global

● Communications

● Metric tensor

25 / 13

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

src

examples

tools

field

fileio

invert

manual

mesh

solver

sys

Time integration

● Explicit and implicit
methods

● Interface to external
solvers in
SUNDIALS and
PETSc

25 / 14

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

src

examples

tools

field

fileio

invert

manual

mesh

solver

sys

Miscellaneous
utilities

● Options get/set to
control behaviour

● Exception handling,
timing and
debugging aids

● MPI and PETSc
 start / stop

● Differencing methods

25 / 15

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual

src

examples

tools

test_suite

conduction

interchange-
instability

elm-pb

6field-
simple

blob2d

Models and test
cases

● Test suite uses
Python to run and
check correctness

● Linear stability
examples

● Slab (2D/3D)
examples

● ELM simulations

25 / 16

Finding your way around

After downloading BOUT++ (or browsing online), you'll see

manual

src

examples

tools

idllib

pylib

matlablib

Mathematica
lib

Tokamak_
grids

Pre- and post-
processing

● “Collect” routines
to read output data
for various
languages

● Processing and
visualisation

● Mesh generation

25 / 17

Example: Hasegawa-Wakatani

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) – kappa*DDZ(phi)
 – Dn*Delp4(n);
ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi – n)
 - Dvort*Delp4(vort);

Field3D n, vort, phi;

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

 Options *options = Options::getRoot()->getSection("hw");
 OPTION(options, alpha, 1.0);
 OPTION(options, kappa, 0.1);

RHS function evaluation (called by solver)

Objects represent scalar and
vector fields over the mesh

25 / 18

Example: Hasegawa-Wakatani

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) – kappa*DDZ(phi)
 – Dn*Delp4(n);
ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi – n)
 - Dvort*Delp4(vort);

Field3D n, vort, phi;

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

 Options *options = Options::getRoot()->getSection("hw");
 OPTION(options, alpha, 1.0);
 OPTION(options, kappa, 0.1);

RHS function evaluation (called by solver)

Tree of options controlling
behaviour. Set in input file:

[hw]
alpha = 0.4

25 / 19

Example: Hasegawa-Wakatani

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) – kappa*DDZ(phi)
 – Dn*Delp4(n);
ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi – n)
 - Dvort*Delp4(vort);

Field3D n, vort, phi;

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

 Options *options = Options::getRoot()->getSection("hw");
 OPTION(options, alpha, 1.0);
 OPTION(options, kappa, 0.1); Macros for common tasks:

options->get(alpha, “alpha”, 1.0);
options->get(kappa, “kappa”, 0.1);

solver->add(n, “n”);
solver->add(vort, “vort”)

RHS function evaluation (called by solver)

25 / 20

Example: Hasegawa-Wakatani

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) – kappa*DDZ(phi)
 – Dn*Delp4(n);
ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi – n)
 - Dvort*Delp4(vort);

Field3D n, vort, phi;

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

 Options *options = Options::getRoot()->getSection("hw");
 OPTION(options, alpha, 1.0);
 OPTION(options, kappa, 0.1);

RHS function evaluation (called by solver)

 Factory options set in input file:
[solver]
type = cvode

[laplace]
type = petsc

(Can be passed an options object)

25 / 21

Example: Hasegawa-Wakatani

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) – kappa*DDZ(phi)
 – Dn*Delp4(n);
ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi – n)
 - Dvort*Delp4(vort);

Field3D n, vort, phi;

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

 Options *options = Options::getRoot()->getSection("hw");
 OPTION(options, alpha, 1.0);
 OPTION(options, kappa, 0.1);

RHS function evaluation (called by solver)

Equations appear in easily readable form

Guard cell communication explicit to allow
optimisation (send...calculate …wait)

25 / 22

Example: Hasegawa-Wakatani

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) – kappa*DDZ(phi)
 – Dn*Delp4(n);
ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi – n)
 - Dvort*Delp4(vort);

Field3D n, vort, phi;

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

 Options *options = Options::getRoot()->getSection("hw");
 OPTION(options, alpha, 1.0);
 OPTION(options, kappa, 0.1);

RHS function evaluation (called by solver)

Equations appear in easily readable form

Overloaded operators, not
template expressions currently

25 / 23

Example: Hasegawa-Wakatani

phi = phiSolver->solve(vort, phi);
mesh->communicate(n, vort, phi);

ddt(n) = -bracket(phi, n, bm) + alpha*(phi - n) – kappa*DDZ(phi)
 – Dn*Delp4(n);
ddt(vort) = -bracket(phi, vort, bm) + alpha*(phi – n)
 - Dvort*Delp4(vort);

Field3D n, vort, phi;

SOLVE_FOR2(n, vort);

phiSolver = Laplacian::create();

 Options *options = Options::getRoot()->getSection("hw");
 OPTION(options, alpha, 1.0);
 OPTION(options, kappa, 0.1);

RHS function evaluation (called by solver)

Derivative methods set in options e.g.
[ddz]
first = C4 # 4th-order Central difference

Boundary conditions in input file e.g
[n]
bndry_all = dirichlet

25 / 24

BOUT++ component patterns

Most components now follow the same “factory” pattern

Factory Implementation A

Implementation B

Implementation B

Options

Object

A header file defines the interface
include/invert_laplace.hxx

Common routines and factory in src:
src/invert/laplace/laplacefactory.cxx

Individual implementations in subdirectory
src/invert/laplace/impls/...

The factory is the only place where individual headers are
included, so forces rest of the code to be independent.

See developer manual for more details

25 / 25

Using BOUT++ (conclusions)

● BOUT++ is open source, under the LGPL license.

● Allows linking to proprietary code, but modifications to core
of BOUT++ come under LGPL.

● You are free to take and modify BOUT++ for any purpose

● Please contribute improvements and fixes back to the
community

● Use of BOUT++ and contributed components should be
acknowledged through co-authorship and/or citations

● One aim of this workshop is to establish a solid community
basis for collaboration

